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ABSTRACT 
 
Graphical user interfaces (GUIs) are the preferred method 
of interacting with a distributed system such as a spacecraft 
ground system.  While GUIs are often difficult to develop 
and maintain, the capabilities of the Java language and 
JavaBeans™ component architecture can be used to create 
a generic framework that allows easy and rapid 
development, deployment, and maintenance of user 
interfaces to control a variety of distributed systems. 
 

1. INTRODUCTION 
 
To control a distributed system, a user typically interacts 
with a GUI that sends commands to and displays telemetry 
from the system.  These GUIs are complex, yet are often 
custom built for each new system to be controlled at 
considerable expense.  In creating GUIs for a set of 
interferometer test beds, we are developing a Java 
framework that all the systems can share.  Dynamic class 
loading, reflection, and other run-time capabilities of the 
Java language and JavaBeans component architecture allow 
the GUI for each system to be created with a minimum of 
custom development.  The framework imposes a minimal 
set of requirements on the systems, yet allows them 
considerable flexibility to extend its capabilities. 
 
Using the framework, GUI components in control panels 
and menus can send commands to a particular distributed 
system with a minimum of system-specific code.  The 
framework receives, decodes, processes, and displays 
telemetry data; custom telemetry data handling can be 
added for a particular system.  In addition, the framework 
supports saving and later restoring user configurations of 
control panels and telemetry displays with a minimum of 
effort in the system-specific code. 
 
While this framework is currently written in Java Swing 
and used in a CORBA® (Common Object Request Broker 
Architecture) environment, the techniques and overall 

design of the framework can be easily adapted to other Java 
GUI toolkits (such as AWT or SWT) and other distributed 
system architectures.  The framework is written entirely in 
the Java language so that GUIs can be deployed to any 
operating system with a Java Runtime Environment without 
recompilation or code changes.  The framework is fully 
multi-threaded, with performance comparable to 
applications written in platform-dependent languages. 
 
This paper will describe the framework’s interaction with 
the system-specific code as well as some of its internals, 
and contains a number of Java code samples.  For the sake 
of brevity, these samples omit details of the actual 
implementation (such as scope qualifiers of class and 
method definitions).  The code for the working system can 
be made available on request. 
 

2. COMMANDING A DISTRIBUTED SYSTEM 
 
First, let us examine how the framework enables a user to 
send commands to a distributed system.  The framework 
requires the system to expose its command interface as a set 
of objects; connecting to these objects and calling their 
methods executes the commands.  This allows the 
framework to leverage existing Java functionality for 
dynamically creating, manipulating and introspecting 
objects.  If a distributed system uses a Java-compatible 
object-oriented architecture, it will probably already exist as 
a set of distributed objects, and the commands can be 
executed by calling methods of the distributed objects 
directly.  In a CORBA-based system, for example, the 
interfaces to the distributed objects are written in a 
language-neutral Interface Definition Language (IDL).  
Tools supplied with the CORBA ORB (Object Request 
Broker) being used (an ORB is supplied with the Java 
Runtime Environment) enable the framework to interact 
with them as Java objects. 
 
If an object-oriented architecture is not already being used, 
exposing the system’s commands to the framework may 



require the creation of adapter objects.  The framework can 
execute commands by calling methods of these adapter 
objects that translate the commands to the format required 
by the system.  These adapter objects are generally simple, 
and can often be generated automatically from templates 
(just as the CORBA IDL compiler generates the Java code 
for objects from the IDL files). 
 
The system may expose its commands as the methods of 
any number of objects.  However, it is recommended that 
the classes of these objects follow established object-
oriented development paradigms and patterns, with each 
class containing a related set of commands for manipulating 
a part of the distributed system.  While the framework does 
not permit method overloading, the classes may extend or 
implement any other classes and their methods make take 
any parameters and return any values desired. 
 
Once a system’s commands are available as methods of 
objects, we need to make those command objects visible to 
the framework.  For each class of command object, an 
implementation of the abstract framework class 
Commander  must be created: 
 
c l ass Commander  {  
    Cont r ol Set  cr eat eCont r ol Set ( ) ;  
    St r i ng get Obj ect Locat i on( ) ;  
    voi d set Obj ect Locat i on( St r i ng s) ;  
    Obj ect  connect ( ) ;  
    voi d di sconnect ( Obj ect  o) ;  
    bool ean i sConnect ed( ) ;  
}  
 
The Commander  class contains methods for setting the 
location of, connecting to, and disconnecting from the 
command object.  The implementation of the connection 
between the framework and the distributed system is 
specific to a particular architecture and not particularly 
interesting; the methods are implemented in the superclass 
of the Commander  classes for a particular system, which 
may be provided as part of the framework (as it is for a 
CORBA-based system).   
 

3. DISPLAYING CONTROLS 
 
Now we need to create the user interfaces for interacting 
with the Commander  objects.  The user interface for a 
Commander  object is encapsulated in the Cont r ol Set  
object returned by the cr eat eCont r ol Set ( )  method: 
 
c l ass Cont r ol Set  {  
    JComponent  get Mai nCont r ol Panel ( ) ;  
    JMenu get CommandMenu( ) ;  
}  
 
A Cont r ol Set  object contains a control panel and a 
menu.  The control panel can contain buttons that send 
commands to the system, input components (text fields, 

combo boxes, checkboxes, etc.) that set the parameters of 
the methods, and output components (labels, text areas, 
etc.) that display the return values of the commands.  The 
menu can likewise contain menu items that send commands 
to the system, set input parameters, or display return values.  
The control panel and menu can be created using any 
desired tool, such as the drag-and-drop GUI editor included 
in many Java development environments.  The framework 
displays the control panel in a window and adds the menu 
to an existing menu bar (along with menu items to 
reconnect to or disconnect from the command object) when 
the Commander  object is created. 
 
The Cont r ol Set  object is responsible for connecting the 
GUI components to the methods of the command object 
and their input parameters and return values.  This is where 
the real power of the framework lies; each GUI component 
can be configured to call a method, set an input parameter 
of a method, or display a method’s return value with only 
one or two lines of code. 
 

4. EXECUTING COMMANDS 
 
To demonstrate the power of the framework, let us consider 
a user interface for controlling a camera.  The distributed 
system contains an object with a t akePi ct ur e( )  
method, which will command the camera to take a picture.  
The Cont r ol Set  object returned by the camera’s 
Commander  object contains a control panel with a single 
button and a menu with a single menu item: 
 
c l ass Camer aCont r ol  ext ends Cont r ol Set  {  
    JPanel  our Panel  = new JPanel ( ) ;  
    JMenu our Menu = new JMenu( ) ;  
 
    Camer aCont r ol ( )  {  
        our Panel . add( new JBut t on( ) ) ;  
        our Menu. add( new JMenuI t em( ) ) ;  
    }  
 
    JComponent  get Mai nCont r ol Panel ( )  {  
        r et ur n our Panel ;  
    }  
 
    JMenu get CommandMenu( )  {  
        r et ur n our Menu;  
    }  
}  
 
To configure the button and menu item to call the 
t akePi ct ur e( )  method of the camera, we call a method 
of the Cont r ol Set  object: 
 
Execut eAct i on bi ndMet hod( St r i ng met hod) ;  
 
The met hod argument is the name of the method of the 
command object to be called, and the returned Act i on 
object can be set as the action of the button or menu item.  
(Java GUI components that perform an action, such as 



buttons and menu items, typically have a 
set Act i on( Act i on)  method.)  When the action of the 
button or menu item is performed (i.e. the button is pressed 
or the menu item is selected by the user), the method of the 
command object will be called by the action.  We can add 
this to the Camer aCont r ol  class’s constructor: 
 
Camer aCont r ol ( )  {  
    Execut eAct i on a =  
            bi ndMet hod( “ t akePi ct ur e” ) ;  
    our Panel . add( new JBut t on( a) ) ;  
    our Menu. add( new JMenuI t em( a) ) ;  
}  
 
It seems simple because the real work is taking place in the 
framework; in particular, inside the Execut eAct i on 
object.  To allow the Execut eAct i on object to access 
the command object (the camera), the framework insures 
that each object contains an internal reference to the object 
that constructed it.  Thus, the Execut eAct i on object has 
an internal reference to the Camer aCont r ol  object that 
constructed it, which has a reference to the Commander  
object that constructed it, which has a reference to the 
command object (once it has been connected).  By 
delegating up the chain, the Execut eAct i on object can 
access the command object.  All this is handled internally, 
and is not exposed to the system-specific code. 
 
To call the method named in the bi ndMet hod( )  call, the 
Execut eAct i on object first uses introspection on the 
command object to search for a method with the requested 
name.   The resulting Met hod object is stored in the 
Execut eAct i on object.  (If no matching method is 
found, the action is disabled and an error message is 
output.)  To avoid the overhead of finding the Met hod 
object every time the action is performed, it is located once 
when the Commander  object is connected (or when the 
Execut eAct i on object is created if the Commander  
object is already connected). 
 
When action is performed, the act i onPer f or med( )  
method of the Execut eAct i on object calls the 
i nvoke( )  method of the Met hod object, executing the 
method of the command object.  This takes place in a 
separate thread so as not to interfere with the operation of 
the GUI.  (Swing, like most GUI toolkits, uses a single 
thread to handle user-generated events such as button 
presses; if the i nvoke( )  method were called in this 
thread, the GUI would become unresponsive until it 
returned.)  The distributed system thus receives and 
executes the command. 
 

5. INPUT PARAMETERS 
 
Merely connecting a method of a command object to a 
button or menu item is only sufficient if the method has no 
parameters.  If this is not the case, however, the framework 

can connect other GUI components in the control panel to 
the input parameters of the method.  Suppose the 
t akePi ct ur e( )  method has the exposure time as its 
only input parameter: 
 
voi d t akePi ct ur e( doubl e exposur e) ;  
 
If a text field for inputting the exposure time is added to the 
control panel, a method of the Execut eAct i on object 
can configure the text field to set the input parameter: 
 
voi d bi ndI nput ( JText Fi el d t ,  i nt  par am) ;  
 
This sets input parameter number par am in the method’s 
parameter list (the first parameter is number zero) from the 
text in text field t  each time the Execut eAct i on 
object’s action is performed.  This adds a few more lines to 
the Camer aCont r ol  class’s constructor: 
 
Camer aCont r ol ( )  {  
    Execut eAct i on a =  
            bi ndMet hod( “ t akePi ct ur e” ) ;  
    JText Fi el d t  = new JText Fi el d( ) ;  
    a. bi ndI nput  ( t ,  0) ;  
    our Panel . add( t ) ;  
    our Panel . add( new JBut t on( a) ) ;  
    our Menu. add( new JMenuI t em( a) ) ;  
}  
 
Again, it seems simple because the real work is taking place 
inside the framework.  The bi ndI nput ( )  method shown 
above delegates internally to this more general method of 
the Execut eAct i on object: 
 
voi d bi ndI nput ( JComponent  c,  
               St r i ng pr oper t y,  
               i nt  par am,  
               For mat  f or mat ) ;  
 
This sets the specified input parameter from any property of 
any GUI component.  (A property is the JavaBeans design 
pattern for reading and writing an object’s internal state 
through special getter and setter access methods.)  In our 
camera example, the first input parameter of the 
t akePi ct ur e( )  method will be set from the “ text”  
property of the text field (which contains the text typed into 
the field). 
 
When setting an input parameter of a method, the 
framework automatically handles conversions between Java 
primitive types or St r i ng objects.  If the input parameter 
is not one of these types (that is, it is any non-string object), 
an optional For mat  object can be supplied to the 
bi ndI nput ( )  method as shown above to convert the 
value returned from the input component to an object of the 
type required. 
 
The framework also has a more powerful mechanism for 
handling input parameters that are objects.  Suppose the 



t akePi ct ur e( )  method of our imaginary camera has a 
single parameter of a class Pi ct ur ePar ams : 
 
voi d t akePi ct ur e( Pi ct ur ePar ams p) ;  
 
c l ass Pi ct ur ePar ams {  
    doubl e exposur eTi me;  
    doubl e f St op;  
    bool ean compr ess;  
}  
 
We can use an alternate form of the bi ndI nput ( )  
method to cause any property of any input component to set 
any field (or subfield) of any input parameter when the 
action is performed: 
 
voi d bi ndI nput ( JComponent  c,  
               St r i ng pr oper t y,  
               St r i ng f i el d) ;  
 
The field is specified in standard Java notation, beginning 
with an array index indicating the parameter number.  Thus, 
to cause our text field from the Camer aCont r ol  
constructor above to set the exposur eTi me field of the 
first (and only) input parameter of the t akePi ct ur e( )  
method, only a small change to our constructor is required: 
 
a. bi ndI nput  ( t ,  “ [ 0] . exposur eTi me” ) ;  
 
The string designating the field is parsed and used to 
recursively introspect the input parameter to find the 
indicated field.  The input parameter may contain objects or 
arrays at any depth; the string “ [ 0] . a[ 1] . b”  will bind 
to field b of the second element of array field a of the first 
input parameter.  Intermediate objects and arrays are 
constructed dynamically as necessary, and must have public 
constructors that take no parameters (this is the default 
constructor in Java if none is specified in a class). 
  
The implementation of all this introspection is, of course, 
much more complex than the description; the framework 
code responsible is considerably longer than this paper.  
However, this complexity is all hidden from the 
implementers of the specific systems; they only need to 
know how to use the bi ndI nput ( )  methods, not how 
they work internally. 
 
Thus far, we have ignored the menu item in this discussion.  
Since, as we have implemented it above, it is using the 
same Execut eAct i on object as the button, it will have 
the same behavior; it will set the t akePi ct ur e( )  
method’s input parameter from the text field in the control 
panel and then call the method.  However, suppose we 
instead want it to prompt the user for the exposure time 
with a dialog containing a text field.  First, we will have to 
configure the menu item with a separate Execut eAct i on 
object, so that it can execute differently from the button.  
Second, we will have to create a JOpt i onPane object 

containing a text field for the dialog, and bind the new text 
field in the same way as the previous one.  Finally, we will 
have to instruct the menu item’s Execut eAct i on object 
to display the dialog before getting the input values from its 
components using this method of the Execut eAct i on 
object: 
 
voi d set I nput Opt i onPane( JOpt i onPane p) ;  
 
The framework will then automatically display the option 
pane in a dialog when the action is performed, before 
setting the input parameters.  The constructor for the 
Camer aCont r ol  class now looks like this: 
 
Camer aCont r ol ( )  {  
    Execut eAct i on a =  
            bi ndMet hod( “ t akePi ct ur e” ) ;  
    JText Fi el d t  = new JText Fi el d( ) ;  
    a. bi ndI nput  ( t ,  0) ;  
    our Panel . add( t ) ;  
    our Panel . add( new JBut t on( a) ) ;  
 
    Execut eAct i on a2 =  
            bi ndMet hod( “ t akePi ct ur e” ) ;  
    JText Fi el d t 2 = new JText Fi el d( ) ;  
    a2. bi ndI nput  ( t 2,  0) ;  
    JOpt i onPane p = new JOpt i onPane( t 2) ;  
    a2. set I nput Opt i onPane( p) ;  
    our Menu. add( new JMenuI t em( a2) ) ;  
}  
 
We now have a control panel and menu that can command 
our camera, and the finished code is not particularly 
complicated.  The framework is doing much of the work for 
us, allowing GUIs to be deployed to many systems, even 
those undergoing rapid development, easily and quickly. 
 

6. RETURN VALUES 
 
As one would expect, displaying the return values from the 
command object’s methods is very similar to setting the 
input parameters.  The Execut eAct i on object contains 
methods for setting a property of a GUI component from 
the return value and setting a dialog to be displayed when 
the method of the command object returns: 
 
voi d bi ndOut put ( JComponent  c,  
               St r i ng pr oper t y,  
               For mat  f or mat ) ;  
voi d set Out put Opt i onPane( JOpt i onPane p) ;  
 
These work in a manner very similar to the methods for 
setting the input parameters.  When the method of the 
command object returns, the return value is used to set the 
indicated property of any connected GUI component, and if 
an option pane has been set, it is displayed to the user as a 
dialog.  (The framework also transparently handles the 
threading issues of the Swing threading model.) 
 



7. ADDITIONAL CONTROL PANELS 
 
It is sometimes useful for a command object’s controls to 
be displayed in multiple control panels.  For example, a set 
of related, but seldom used, controls can then be displayed 
in a second control panel apart from the main control panel, 
and this control panel can be opened and closed as needed.  
To support this, the Execut eAct i on object has a method 
that creates an Act i on object to display an additional 
control panel: 
 
Act i on bi ndCont r ol Panel ( JComponent  pnl ) ;  
 
The action of a button or menu item can then be set to this 
Act i on object.  The framework will handle placing the 
panel in a window and displaying it to the user when the 
action is performed. 
 

8. CREATING THE COMMANDER OBJECTS 
 
We have seen how the Commander  classes are defined, 
how they create controls to be displayed to the user, and 
how those controls send commands to the distributed 
system.  Now we have to answer the question of how the 
Commander  objects are created by the framework in the 
first place.  Fortunately, this is relatively simple, at least in 
terms of the system-specific code.  Unfortunately, it adds 
some additional requirements to the distributed system. 
 
In the current operation of the framework, the distributed 
system is required to provide a list of all the locations of 
objects available to be commanded. The GUI is configured 
at startup (in a system property, an initialization file, or the 
command line) with the location of this list.  For example, 
in the current CORBA framework, all the available objects 
are entries in a Naming Service.  The GUI is given the 
location of the Naming Service; the objects there can be 
easily listed.  The GUI is also configured with a list of all 
the available implementations of the Commander  class 
(the actual implementation class names).  Finally, each 
implementation of the Commander  class must have a 
public constructor that takes no arguments. 
 
To connect to an object, the user selects a location and a 
corresponding Commander  implementation from a dialog.  
Once a location and Commander  implementation have 
been selected, a factory object in the framework 
dynamically loads the selected Commander  class by name 
and constructs a new instance of the class.  The factory then 
passes the location to the set Obj ect Locat i on( )  
method of the Commander , and connects the Commander  
to the object by calling the connect ( )  method. 
 
The user could be spared from having to select the 
Commander  implementation by having the framework 
connect to the object to be commanded and discover its 

type before creating the appropriate Commander  object.  
However, this would make changing the implementation for 
connecting to the command objects more difficult, and also 
make commanding heterogeneous systems considerably 
more complicated.  Requiring the user to select the 
Commander  implementation has not been an issue in the 
GUIs deployed so far. 
 
The framework then displays the main control panel and 
menu for the connected object, and the user can interact 
with it.  Once the user has all the desired control panels 
open, the state of the entire GUI can be saved to a file.  This 
state can be restored the next time the GUI is started by 
specifying the file name on the command line; the GUI will 
then reconnect to all the objects and redisplay all the control 
panels exactly as they were before.  This greatly increases 
the ease of use of the GUI by allowing individual 
customization of the control panel layout. 
 

9. PERSISTENCE 
 
Implementations of the Commander  class need not contain 
any code to support saving and restoring the GUI’s state; 
the persistence of the GUI is handled entirely within the 
framework.  A careful examination of the framework 
reveals how this is accomplished.  First, the connections to 
the distributed system can be saved and restored by saving 
the locations the user has connected and the name of the 
Commander  implementation each location is using.  
Second, the Commander  implementations only provide the 
contents of the control panel windows and menus.  The 
windows and menus themselves are created and displayed 
by the framework and managed internally, so that their size, 
position, and other state can be saved and restored entirely 
within the framework.  Finally, the framework tracks the 
bindings of the control panel components made by the 
implementation.  Since these bindings encompass all the 
relevant properties of the control panels that can be changed 
by the user, and the bindings give easy access to the 
properties, saving and restoring them can be handled 
entirely within the framework. 
 

10. TELEMETRY DISPLAYS 
 
In addition to enabling the user to send commands to the 
system, the GUI must also display telemetry from the 
system.  While the current telemetry framework has some 
flexibility, it is not as advanced as the command framework 
previously described and requires more system-specific 
code and effort.  However, it still contains a number of 
useful abstractions that I will briefly describe. 
 
Just as the implementations of the Commander  class can 
be specified as part of the configuration of the GUI at 
startup, so can the telemetry display classes be specified.  In 
the simplest design, each telemetry display class must 



extend the JComponent  class so that it can be displayed 
as the contents of a frame, have a constructor that takes no 
arguments, and implement an interface that allows it to 
receive telemetry data: 
 
i nt er f ace Recei ver  {  
    voi d handl eDat a ( Val ueEvent  e) ;  
    St r i ng get Name( ) ;  
}  
 
The display object can manipulate the data internally in any 
way it sees fit and display it to the user.  If the display 
object is not capable of displaying the telemetry it is 
receiving (for example, it does not know how to handle the 
data type, such as an image sent to a text display), it should 
display a useful error message to the user.  The framework 
itself contains common display classes, such as an image 
viewer, a strip chart, and a table for displaying text or 
numeric data in rows and columns. 
 
In actual practice, the problem is more complicated.  For 
example, some telemetry displays might be able to display 
multiple channels simultaneously (such as a strip chart) 
while others can only display a single channel in a useful 
manner (such as an image display).  Also, some telemetry 
displays often have internal state that is not immediately 
visible to the framework, but can adjusted by the user and 
must be persisted along with the rest of the user interface.  
For example, a strip chart should allow the user to adjust 
the bounds of the axes and the colors of the individual 
traces.  The current framework requires telemetry displays 
to implement an extensive interface, but provides a number 
of helper classes to which system-specific displays can 
delegate the implementation of the interface.  We are 
currently working on a more general solution. 
 

11. TELEMETRY DATA 
 
To receive telemetry, the framework requires some 
standardization of the data.  It expects that the telemetry 
data will be sent from the system as one or more data 
streams, and requires that the telemetry from each element 
of the system can be uniquely identified.  The stream of 
data being sent from an individual element of the system is 
referred to as a telemetry channel.  The framework requires 
the data to be sent in packets; each packet must include a 
description of the type of data contained within it as well as 
the data itself. 
 
For example, in the current CORBA implementation, the 
telemetry is sent using asynchronous CORBA Event 
Channels.  The GUI requests data from a particular channel 
by creating a PushConsumer  object that connects itself to 
the event channel.  As the distributed system produces data, 
the push( Any)  method of the PushConsumer  object 
will be called by the distributed system to send the data to 

the GUI.  The data arrives as CORBA Any  objects, which 
automatically contain both the data they were created to 
hold and a TypeCode object describing the contents of the 
Any  object. 
 
A different telemetry system, such as telemetry sent directly 
over a network socket, would require a different 
Consumer  implementation in the same way that a 
different command system requires a different connection 
implementation in the Commander  superclass.  The 
Consumer  implementation for a network socket might 
need to filter the data if multiple system elements (i.e. 
multiple channels) send data over the same socket.  The 
framework around the Consumer  and Commander  
objects that handles their creation, destruction, and 
persistence remains the same, however. 
 
The Consumer  objects also act as local multiplexers for 
the telemetry data to minimize the load on the distributed 
system.  Only one Consumer  object is created for each 
channel.  If more than one telemetry display is subscribed 
to the same channel (the displays might be of different 
types, such as a text display and a graph), they are both 
connected to the same Consumer  object by the 
framework. 
 
Just as it must make a list of command locations available 
to the framework, the system must also make a list of 
telemetry channels available, and the GUI is configured 
with the location of this list at startup.  (In the CORBA 
implementation, the system includes an object in the 
Naming Service that can be queried for this list.)  The user 
selects a channel from the list and a display type.  The 
framework then creates the display object of that type (in 
exactly the same way a Commander  is created), displays it 
in an internally managed frame, and connects it to the 
Consumer  for the channel.  
 

12. UNPACKING TELEMETRY 
 
In discussing the telemetry displays, we specified that they 
would receive telemetry data as Val ueEvent  objects 
without discussing how they are created from the incoming 
packets.  In fact, the Val ueEvent  objects are just 
convenient wrappers created around the data packets.  The 
Consumer  object creates a value event for each data 
packet received and passes it to the displays.  The 
Val ueEvent  object has a get Dat a( )  method that 
unpacks the data in the packet, caches it internally, and 
returns it.  Since Consumer  objects send the same 
Val ueEvent  object to all the displays subscribed to a 
channel for each packet received, this insures that a given 
packet is only unpacked at most once, and is not unpacked 
at all if it is not displayed, maximizing the performance of 
the GUI. 
 



The actual work of unpacking the telemetry packet is done 
by a set of factories; the classes of these factories, as might 
be expected, are supplied to the GUI in its configuration at 
startup, and each factory class must have a no-argument 
constructor.  Each must also implement an interface that 
allows the framework to find out what types of packets it 
can unpack and to perform the unpacking: 
 
i nt er f ace Tel emet r yFact or y {  
    bool ean canCr eat eVal ue( Obj ect  t ype) ;  
    Val ue cr eat eVal ue( Obj ect  dat a) ;  
}  
 
The parameters for the factory methods must be as general 
as possible, and therefore are of class Obj ect .  The 
Val ueEvent  objects are created with a reference to the 
array of available factory objects by the framework, and can 
then delegate the unpacking of the data packet to the 
appropriate factory. 
 
Scanning the factories for each data packet to be unpacked 
introduces extra overhead in the telemetry system.  
However, the canCr eat eVal ue( )  methods of the 
factories will be simple enough that this overhead will be 
minimal.  Scanning the factories allows the telemetry 
framework not to need to know what type of data is going 
to be sent on a channel until data actually starts arriving.  
Scanning also allows a channel to carry more than one type 
of data, which is useful for sending errors without using a 
second channel or having special “out-of-bounds”  values. 
 
The factories return the unpacked telemetry as Val ue 
objects.  These objects encapsulate the data and provide 
convenience methods that allow the telemetry displays to 
access the unpacked data in commonly desired forms: 
 
i nt er f ace Val ue {  
    Ar r ayVal ue asAr r ayVal ue( ) ;  
    doubl e doubl eVal ue( ) ;  
    Obj ect  get Val ue( ) ;  
    Number  numer i cVal ue( ) ;  
    St r i ng st r i ngVal ue( ) ;  
    St r i ng t oSt r i ng( For mat [ ]  f or mat s) ;  
}  
 
i nt er f ace Ar r ayVal ue ext ends Val ue {  
    Obj ect  get Val ue( i nt  i ndex) ;  
    Val ue val ue( i nt  i ndex) ;  
    Val ue[ ]  val ues( ) ;  
    Number  numer i cVal ue ( i nt  i ndex) ;  
    Number [ ]  numer i cVal ues( ) ;  
    doubl e doubl eVal ue( i nt  i ndex) ;  
    doubl e[ ]  doubl eVal ues( ) ;  
    i nt  l engt h( ) ;  
}  
 
To add support for a custom telemetry data type, 
implementations of the Val ue interfaces that encapsulate 
the raw data and a factory that can unpack the data from a 

packet must be created.  The framework provides 
implementations for numeric values and arrays, strings, 
images, and other common data types, as well as factories 
to unpack them from CORBA Any  packets. 
 

13. CONCLUDING REMARKS 
 
Dynamic class loading, reflection, and other run-time 
capabilities of the Java language and JavaBeans component 
architecture can be used to create a framework that allows 
rapid development, wide deployment, and easy 
maintenance of system-specific user interfaces, allowing 
the developer to focus on the distributed system rather than 
the user interface.  In particular, determining the class of a 
few key objects in the framework at run-time allows the 
framework to be easily modified to work with a wide 
variety of distributed systems.  The requirements imposed 
on the systems by the framework need not be very 
extensive, and various adapter strategies can be used to 
assist in meeting these requirements.  Though the relative 
simplicity of the system-specific code comes at the price of 
complexity in the shared framework, the powerful 
capabilities of the Java language to create a generic, 
adaptable framework reduce the effort necessary to build 
and maintain the framework considerably. 
 

NOTICES 
 
Java and all Java-based marks are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United States 
and/or other countries. CORBA is a registered trademark of 
Object Management Group, Inc. in the United States and/or 
other countries. 
 


